Student Motivation Research Paper

How motivation affects academic performance: a structural equation modelling analysis

Center for Research and Development of Education, University Medical Center Utrecht, P.O. Box # 85500, 3508 GA Utrecht, The Netherlands

Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands

Institute for Research and Education, VU University Medical Center Amsterdam, Amsterdam, The Netherlands

Department of Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Amsterdam, The Netherlands

R. A. Kusurkar, Phone: +31-887556819, Fax: +31-887553409, Email: ln.thcertucmu@rakrusuK.R.

Corresponding author.

Author information ►Article notes ►Copyright and License information ►

Received 2011 Oct 3; Accepted 2012 Jan 31.

Copyright © The Author(s) 2012

This article has been cited by other articles in PMC.

Abstract

Few studies in medical education have studied effect of quality of motivation on performance. Self-Determination Theory based on quality of motivation differentiates between Autonomous Motivation (AM) that originates within an individual and Controlled Motivation (CM) that originates from external sources. To determine whether Relative Autonomous Motivation (RAM, a measure of the balance between AM and CM) affects academic performance through good study strategy and higher study effort and compare this model between subgroups: males and females; students selected via two different systems namely qualitative and weighted lottery selection. Data on motivation, study strategy and effort was collected from 383 medical students of VU University Medical Center Amsterdam and their academic performance results were obtained from the student administration. Structural Equation Modelling analysis technique was used to test a hypothesized model in which high RAM would positively affect Good Study Strategy (GSS) and study effort, which in turn would positively affect academic performance in the form of grade point averages. This model fit well with the data, Chi square = 1.095, df = 3, p = 0.778, RMSEA model fit = 0.000. This model also fitted well for all tested subgroups of students. Differences were found in the strength of relationships between the variables for the different subgroups as expected. In conclusion, RAM positively correlated with academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection.

Keywords: Autonomous motivation, Controlled motivation, Study strategy, Study effort, Academic performance, Self-determination theory

Introduction

Motivation has been shown to positively influence study strategy, academic performance, adjustment and well-being in students in domains of education other than medical education (Vansteenkiste et al. 2005). Studying motivation particularly in medical students is important because medical education is different from general education in several aspects, some of them being high intensity of study, the requirement to carry out clinical work along with study and the need to follow a highly specifically defined path to be able to qualify to practice as doctors. In a literature review we found that the positive correlation between motivation and performance has not been substantiated strongly in medical education as different studies have contradictory findings (Kusurkar et al. 2011). The objective of the present research study was to explore the relationships between motivation, study strategy, study effort and academic performance among medical students.

There are different theories of motivation; some focus on quantity of motivation and others on quality. Quantity of motivation could be high or low. Quality of motivation depends on whether the source of motivation is internal or external. Self-determination Theory (SDT) of motivation considers quality of motivation to be more important than quantity and describes a continuum for quality of motivation (Ryan and Deci 2000a, b). This ranges from intrinsic motivation at one end to amotivation at the other end of the continuum, with four types of extrinsic motivation (integrated regulation, identified regulation, introjected regulation, external regulation) in between. Intrinsic motivation is derived out of genuine interest in an activity. Extrinsic motivation is derived out of an expected gain or a separable outcome. As elaborated by SDT, not all types of extrinsic motivation are undesirable. Extrinsic motivation spans from high self-determination to low self-determination (see Fig. 1; Ryan and Deci 2000a, b). Identified Regulation, the highly autonomous type of extrinsic motivation, is close to intrinsic motivation. Identified regulation and intrinsic motivation can be summed up to generate Autonomous Motivation (AM). Thus AM depicts self-determined motivation. Introjected and external regulation, which are low in self-determination, can be summed up together to generate Controlled Motivation (CM). Thus CM depicts motivation which is very low on self-determination.

SDT advocates that the more self-determined or autonomous the motivation, the better are the observed outcomes (Ryan and Deci 2000a, b): namely deep learning (Vansteenkiste et al. 2005; Grolnick and Ryan 1987), high academic performance (Soenens and Vansteenkiste 2005; Boggiano et al. 1993), better adjustment and positive well-being (Black and Deci 2000; Levesque et al. 2004).

In the present study we measured Autonomous Motivation (AM) and Controlled Motivation (CM) as described by SDT (Vansteenkiste et al. 2005; Grolnick and Ryan 1987).

Motivation has been reported in primary, secondary and college education to influence academic performance through study effort as a mediator (Vansteenkiste et al. 2005). This relationship, to our knowledge, has never been tested in medical education. We searched for articles in medical education employing Structural Equation Modelling (SEM) as a methodology and found articles studying factors leading to choice of specialty in medicine (Williams et al. 1994, 1997), basic science and clinical knowledge (Schmidt and Moust 1995), clinical reasoning (De Bruin et al. 2005), use of SEM in medical education (Violato and Hecker 2007), influence of clerkships on student learning etc. We did not find any articles studying the effect of motivation on learning and academic performance. Our study therefore adds to the literature on this aspect in medical education. We have also compared subgroups such as males with females and students selected through a qualitative selection procedure with weighted lottery selection, which has never been done before.

If there is a priori hypothesis, Structural Equation Modelling (SEM) can employed in research reliably for testing the relationships of different variables with each other, though causality cannot be inferred unless it is an experimental study (Violato and Hecker 2007; Kline 2011). The foundation of a good SEM analyses is a well-founded theoretical basis for relationships being tested in the model (Violato and Hecker 2007; Kline 2011). We had hypotheses, including the directionality of relationships, well-founded in SDT literature. The variables we used in our SEM analyses were Relative Autonomous Motivation (RAM), Good Study Strategy (GSS), Study effort and Academic Performance (see Fig. 2). RAM meant how much of the student’s motivation originated from within himself or herself (autonomous) as compared to that originating from external factors (controlled; Vansteenkiste et al. 2005). GSS meant how much the students studied to understand the study material as against memorizing it without understanding (Biggs et al. 2001). Study effort meant how many hours the student devoted to self-study. Academic Performance meant how the student performed in terms of grades during his medical study.

Fig. 2

Hypothesized model for motivation influences performance

Our hypotheses were:

  • A relative autonomous or self-determined motivation leads to a good study strategy and high study effort, which leads to better academic performance, i.e. the study strategy mediates the influence of motivation on academic performance.

  • The overall process and direction of effects are similar among males, females and students admitted through qualitative selection procedure or weighted lottery selection, the relative influence of different factors being different.

We also wanted to study the difference between how the model works in males and females as it has been found before that males have higher CM and lower AM than females (Vansteenkiste et al. 2009; Ratelle et al. 2007; Sobral 2004; Kusurkar et al. submitted). The Netherlands uses a weighted lottery selection system for admitting most students to medical study, and qualitative selection at some schools for a minority of the students. The high school exam grade point average (GPA) of the applicants is weighted according to the score, i.e. the higher the score, the more number of times the student is entered into the lottery, thus giving him or her a higher chance to get selected (Ten Cate 2007). In addition, we wanted to study the difference between how the model works in students selected through qualitative selection and weighted lottery, as students selected through qualitative selection have been found to have higher motivation than those selected through weighted lottery (Hulsman et al. 2007). We therefore designed the present study to test the following research questions and model (see Fig. 2):

  1. Does relative autonomous motivation positively affect good study strategy used by students and the study effort?

  2. Do good study strategy and high study effort positively affect academic performance?

  3. Does this model (Fig. 2) work differently in male and female students? If yes, what are the differences?

  4. Does this model work (Fig. 2) differently in students selected through qualitative selection and weighted lottery? If yes, what are the differences?

Methods

Sample

Students from years 2 to 6 of the VU University Medical Center Amsterdam were invited to participate in our research project through an electronic questionnaire in September 2009. The thumb rule for a good sample size for SEM is more than 200, a more accurate estimation being 20 subjects for every variable in the model. Our sample size satisfied both rules (Violato and Hecker 2007; Kline 2011).

Instruments used

The electronic survey designed included some personal data questions, the Academic Motivation Scale (AMS—Cronbach’s alpha ranging from 0.63 to 0.86 for different subscales; Vallerand et al. 1992, 1993) to measure the quality of motivation of the students as described by SDT and the Revised Study Process Questionnaire-2 Factors (R-SPQ-2F—Cronbach’s alpha ranging from 0.57 to 0.72; Biggs et al. 2001) to measure the study strategies used by the students. Academic performance was collected in the form of GPA and European credits (ECs) obtained according to European Credit Transfer System.

Variables

Motivational variables

We used the variables Autonomous Motivation (AM), Controlled Motivation (CM) and Relative Autonomous Motivation (RAM). AM was a measure of the amount of self-determined motivation meaning the motivation which came from within the student. AM was calculated by summing up the average scores on intrinsic motivation and identified regulation subscales of the AMS. CM was a measure of motivation which originated outside of the individual, meaning that it was determined by external factors or reasons. CM was calculated by summing up the average scores on introjected and external regulation subscales of the AMS. Since AM and CM exist simultaneously within an individual, we wanted to create a single score on the relative self-determined motivation, which is put forth as the optimal type of motivation by SDT. RAM was calculated to get a single variable of motivation which incorporated both AM and CM in order to get an idea of the overall self-determined or autonomous motivation. It was calculated by assigning weights to intrinsic motivation (+2), identified regulation (+1), introjected regulation (−1) and external regulation (−2), depending on the placement of this type of motivation in the SDT continuum (see Fig. 1) and summing these weighted scores (Vansteenkiste et al. 2005). AM and CM (Cronbach’s alpha 0.87 and 0.72 respectively) have been reliably and successfully used in earlier studies (Vansteenkiste et al. 2005).

Study process related variables

R-SPQ-2F was used to obtain the scores on the strategies used by students when they studied, Deep Strategy (DS) and Surface Strategy (SS; Biggs et al. 2001). Deep Strategy means the strategy used by the student to “maximise meaning” in the material learnt and Surface Strategy means use of rote learning or memorisation of facts (Biggs et al. 2001). Every student employs both types of strategies from time to time. We wanted to use a score which measured relative use of deep strategy, which is considered the “good” type of strategy to be used by students (Biggs et al. 2001). We therefore converted these two scores into a single score called Good Study Strategy (GSS) subtracting the mean SS item scores from the mean DS item scores. A similar type of calculation has been used by Vansteenkiste et al. to create an optimal learning composite from the scores on the LASSI (Learning And Study Strategies Inventory; Vansteenkiste et al. 2005). We also collected self-reported data on study effort (how many hours the student devoted to self-study) among the students.

Academic performance variables

All course results obtained by the participating students during one semester (September 2009-January 2010) were obtained from the student information systems of the medical school. To calculate the European credits (ECs), credits from all courses passed within the semester within the programme of medicine were summed. The maximum number of credits that could be obtained per course was the same for each student as per the university rules. Extracurricular credits were not included.

The GPA was defined as the average grade per course, weighted for credits earned (ECs). In the present study only final passing grades were used (grade by which the student had earned credits and passed the course). Within this only courses with a numerical (1–10) final grade were included and only the highest (passing) grade was used to calculate GPA. This was done because we considered the highest grade more important than the attempt at which this grade was obtained, especially since these attempts were made within a very short period of time. Also initial fail grades are not retained in the school’s administration as soon as a pass grade is entered after retake of an exam. Persistent efforts towards learning are as driven by motivation as best performance.

The GPAs of the students from years 2 and 3 were mainly based on courses with cognitive assessments or knowledge tests, whereas GPAs from the students from years 4, 5 and 6 mostly include courses with a mixture of cognitive and knowledge assessments and clinical performance appraisals. These scores were converted into z-scores within the respective groups to make them comparable. We did not assess cognitive and clinical performances separately as clinical performance grades are only available for the subgroup of students in the last phase of the medical study programme.

Statistical analyses

The software programme SPSS version 15.0 was used for our basic analyses. After checking for normal distribution of the data, linearity of relationships between variables and computing the basic correlations between the different variables, reliability tests for all the scales used to measure the different variables were performed. Multiple regression analysis was planned to determine whether age, gender, year of curriculum and method of admission affected the motivational variables and to compare the model between the groups among whom we found significant effects. Scores on all the variables were converted to z-scores to make them comparable. To compare scores on all variables between subgroups, males and females, and students selected through qualitative selection and weighted lottery, student’s unpaired t-tests were performed.

Structural Equation Modelling (SEM) analysis was carried out using the software AMOS version 5.0. Comparison was done between the proposed and tested model for males and females and for students selected through qualitative selection and weighted lottery. The indices used for estimating goodness of fit of the model were Chi-square goodness of fit value >0.05, Comparison of Fit Index (CFI > 0.09) and Root Mean Square Error of Approximation (RMSEA < 0.05). The acceptable values for a good fit of the model are given in parentheses following each index (Violato and Hecker 2007; Kline 2011).

Results

The response rate of the students was 26.6% (464/1,742), which included 27.8% (129/464) males and 72.2% (335/464) females. The gender distribution was almost the same as compared to that in the normal medical student population. Students admitted through a weighted lottery selection procedure comprised 81.25% (377/464) and students had been admitted through a qualitative selection procedure comprised 18.75% (87/464). These percentages broadly correspond to the percentage of these students in the whole medical student population, so we consider the sample representative.

We performed analyses on the 383 students as the GPAs of 81 students could not be computed because these students were in an in-between phase in their study where they had completed the previous year, but could not start or finish enough exams to obtain GPAs in the first semester of 2009–2010. The gender and selection distribution characteristics were similar to the overall population, so excluding these students did not adversely affect our results.

The mean age for both, males and females, was 23.3 years (the range was 18–40 years).

The reliabilities of the scales used, i.e. Cronbach’s alphas (see Table 1), ranged from 0.568 to 0.745, which were in line with those found in other studies (Biggs et al. 2001).

The correlations between the different variables were as follows (see Table 2): AM and CM were significantly positively correlated which was expected as it had been observed in earlier studies (Vansteenkiste et al. 2005). RAM was significantly positively correlated with AM and significantly negatively correlated with CM, which showed that the computation of RAM as a variable was well-founded. AM and RAM were significantly negatively correlated with amotivation. RAM was significantly positively correlated with Good Study Strategy and GPA. These correlations formed the basis for testing the model proposed in Fig. 2.

Table 2

Pearson correlations between the variables of all students (n = 383)

A regression analysis was performed to find out whether age, gender, year of curriculum and method of admission (qualitative versus weighted lottery selection) affected RAM and it was found that the effects of gender (R2 = 0.046, p = 0.000) and method of admission (R2 = 0.015, p = 0.009) were significant and the effects of age (p = 0.071) and year of curriculum (p = 0.368) were not significant.

Since gender had a significant effect on RAM, we performed student’s unpaired t-test to compare males with females. We found that males had significantly higher CM, significantly lower RAM and significantly lower GPAs as compared to the females (see Table 3).

Table 3

Results of T test comparing Males (n = 110) with Females (n = 273) and students selected through weighted lottery (n = 318) with those selected through a Qualitative selection procedure (n = 65)...

Since method of admission significantly affected RAM we performed student’s unpaired t-test to compare students selected through qualitative selection and weighted lottery. We found that students selected through qualitative selection had significantly higher AM and RAM and significantly lower ECs and amotivation as compared to those admitted through weighted lottery (see Table 3).

The structural equation model analyses, which included comparing the male and female groups, resulted in the model depicted in Fig. 3 and had the following characteristics: n = 383, df = 3, Chi square = 1.095, p = 0.778 (>0.05) i.e. non-significant (Chi-square goodness of fit), so this model was a good model. CFI = 1.000 (>0.09), RMSEA (Root Mean Square Error of Approximation) model fit was equal to 0.000 (<0.05), which was a good fit. The model fit both male and female groups very well (characteristics of the models remained the same as mentioned above), but the regression weights for the different relationships between both groups were different (see Table 4).

Fig. 3

Structural equation model depicting relationship between motivation, study strategy and performance for all students. ***p < 0.001

Table 4

Differences in regression weights of variables between models for all, males, females, qualitative selection and lottery selection

We used the same model for the structural equation model analyses which included comparing the qualitative and weighted lottery selection subgroups and the model (See Fig. 3) had the following characteristics: n = 383, Chi square = 4.709, df = 3, p = 0.194 (>0.50), therefore non-significant (Chi-square goodness of fit). The CFI = 0.990 (>0.09) and RMSEA model fit for this was 0.027 (<0.05), which is a good fit. The model fit both qualitative and weighted lottery selection subgroups very well (characteristics of the models remained the same as mentioned above), but the regression weights for the different relationships between both groups were different (see Table 4).

We found in the present study that relative autonomous motivation is positively associated with the use of a good study strategy by the students, which is positively associated with high study effort and better GPA (see Fig. 3; Table 4). The relative associations for these relationships were different in males, females, qualitative and weighted lottery selection subgroups (see Table 4).

Discussion

In the present study, we found that relative autonomous motivation is positively associated with the use of a good study strategy by the students which is positively associated with higher study effort (also found by Wilkinson 2007, though not through SEM analyses; Wilkinson et al. 2007) and better GPA. Vansteenkiste et al. found that a similar model incorporating self-study hours within the variable “Optimal Learning composite” fit students in the same age group (mean age about 23 years) in a general education study well (Vansteenkiste et al. 2005). Relative autonomous motivation is significantly associated with higher GPA (also found by Sobral 2004), but the relation seems to be more indirect, i.e. through use of good study strategy, instead of a direct relation. The positive correlation of autonomous motivation with deep study strategy (Sobral 2004) and deep study strategy with academic performance is supported by in other studies in medical education (Sobral 2004; McManus et al. 1998). We had expected to find significant positive association between relative autonomous motivation and study effort, but did not find this.

As expected, differences were found in the nature of relationships between males and females and qualitative and weighted lottery selection subgroups. Significant positive association of RAM on GSS and GSS on high study effort were found in all the four groups, so these relationships seem to be well-substantiated. With the exception of the males subgroup, GSS showed significant positive association with GPA in all subgroups. Study effort showed significant positive association with GPA only in the males and qualitative selection subgroups, and no significant positive association in the overall model. This means that some variables have stronger associations in some subgroups and weaker associations in others. RAM seems to have an indirect positive association with GPA (Pearson correlation = 0.121, p < 0.001) through its positive association with GSS, rather than having a direct association, in all except the males subgroup. In the qualitative selection subgroup, RAM seems to have an indirect positive association with GPA (Pearson correlation = 0.121, p < 0.001) also through its positive association with study effort. One of the criteria for admission through a qualitative selection was evidence of significant time investment in certain eligible activities parallel to full time education, including health-related work, of at least 160 h per year. Our finding that this subgroup showed higher association of study effort with GPA serves as a validation for our findings. In the males subgroup, RAM seems to have an indirect positive association with GPA (Pearson correlation = 0.121, p < 0.001) only through its positive association with study effort.

Vansteenkiste et al. found differences in the scores of males and females on some variables, but did not compare their proposed model between male and female groups (Vansteenkiste et al. 2005). Our study thus adds to Vansteenkiste et al. study.

Findings of other studies in medical education support the differences found between males and females in the present study in the quantity of motivation (Females > Males; Kusurkar et al. 2010; Carlo et al. 2003; Loucks et al. 1979) and quality of motivation (females have higher autonomous or intrinsic and lower controlled or extrinsic motivation than males; Kusurkar, Croiset and Ten Cate (submitted); Buddeberg-Fischer et al. 2003). The differences between the qualitative and weighted lottery selection subgroups in the quantity of motivation (Qualitative selection > Weighted lottery selection) are also supported by similar findings in other studies (Hulsman et al. 2007). Thus, our study also adds to the study of differences between medical students selected by qualitative and weighted lottery selection.

Thus we found acceptable evidence for our proposed model which was based on a priori hypothesis derived from SDT.

Implications

Our study provides acceptable evidence that the quality of motivation is important in determining good performance among medical students through good study strategy and high effort. These findings imply that we should specifically attempt to target enhancing autonomous motivation among medical students in order to encourage an attitude towards deep learning and high effort and finally good performance.

Strengths and limitations

One of the strengths of our study is that we used a structural equation modelling approach and have found a well-fitting model for the relationship between motivation, study strategy, effort and academic performance. Another strength is that we have compared the model between male and female subgroups and qualitative and weighted lottery selection subgroups. Since this study was performed in the Netherlands we were in a unique position to compare the latter two subgroups.

The major limitation of our study was a low response rate. However, given the fact that the responding population seemed representative of the medical student population in general, and that the absolute number of responses allows for structural equation analysis, we consider reporting our findings to add to the existing literature. The other is that this study was carried out at a single university in the Netherlands and hence has limited generalisability. It can very well serve as a good starting point for more studies on the same aspect in medical education.

Conclusion

Relative Autonomous Motivation positively affects academic performance through deep strategy towards study and higher study effort. This model seems valid in medical education in subgroups such as males, females, students selected by qualitative and weighted lottery selection procedures.

Acknowledgments

We would like to thank Amro Elkenawy from the student administration of VUmc Amsterdam for compiling the data on students’ academic success.

Conflict of interest

None.

Ethical approval

Medical Ethics Review Boards of university medical centers in the Netherlands usually exempt educational research from requirement of ethical approval, as the national legislation focuses on medical research carried out with patients. Since medical education journals now like to have ethically approved studies, the NVMO-ERB was recently established, but this happened after our study was started, therefore we could not obtain ethical approval. We ensured alignment with the rules of Helsinki declaration by: obtaining written, informed consent, voluntary participation, guarantee of confidentiality and freedom to withdraw from the study at any point in time without any explanation.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

  • Biggs J, Kember D, Leung DYP. The revised two-factor Study Process Questionnaire: R-SPQ-2F. British Journal of Educational Psychology. 2001;71:133–149. doi: 10.1348/000709901158433.[PubMed][Cross Ref]
  • Black AE, Deci EL. The effects of instructors’ autonomy support and students’ autonomous motivation on learning organic chemistry: A self-determination theory perspective. Science Education. 2000;84:740–756. doi: 10.1002/1098-237X(200011)84:6<740::AID-SCE4>3.0.CO;2-3.[Cross Ref]
  • Boggiano AK, Flink C, Shields A, Seelbach A, Barrett M. Use of techniques promoting students’ self-determination: Effects on students’ analytic problem-solving skills. Motivation and Emotion. 1993;17(4):319–336. doi: 10.1007/BF00992323.[Cross Ref]
  • Buddeberg-Fischer B, Klaghofer R, Abel T, Buddeberg C. Influence of gender and personality tRAMts on the career planning of Swiss medical students. Swiss Medical Weekly. 2003;133:535–540.[PubMed]
  • Carlo MD, Swadi H, Mpofu D. Medical student perceptions of factors affecting productivity of problem-based learning tutorial group: Does culture influence the outcome? Teaching and Learning in Medicine. 2003;15(1):59–64. doi: 10.1207/S15328015TLM1501_11.[PubMed][Cross Ref]
  • De Bruin ABH, van de Wiel MWJ, Rikers RMJP, Schmidt HG. Examining the stability of experts’ clinical case processing: An experimental manipulation. Instructional Science. 2005;33:251–270. doi: 10.1007/s11251-005-3598-8.[Cross Ref]
  • Deci EL, Ryan RM. The “What” and “Why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry. 2000;11:227–268. doi: 10.1207/S15327965PLI1104_01.[Cross Ref]
  • Grolnick WM, Ryan RM. Autonomy in children’s learning: An experimental and individual difference investigation. Journal of Personality and Social Psychology. 1987;52(5):890–898. doi: 10.1037/0022-3514.52.5.890.[PubMed][Cross Ref]
  • Hulsman RL, van der Ende JSJ, Oort FJ, Michels RPJ, Casteelen G, Griffioen FMM. Effectiveness of selection in medical school admissions: evaluation of the outcomes among freshmen. Medical Education. 2007;41:369–377. doi: 10.1111/j.1365-2929.2007.02708.x.[PubMed][Cross Ref]
  • Kline RB. Principles and practice of structural equation modeling. 3. NY: The Guillford Press; 2011.
  • Kusurkar, R., Croiset, G., & Ten Cate, T. J. (submitted). Motivational profiles of medical students: Association with study effort, academic performance and exhaustion. [PMC free article][PubMed]
  • Kusurkar R, Kruitwagen C, Ten Cate TJ, Croiset G. Effects of age, gender and educational background on strength of motivation for medical school. Advances in Health Science Education. 2010;15:303–313. doi: 10.1007/s10459-009-9198-7.[PMC free article][PubMed][Cross Ref]
  • Kusurkar R, Ten Cate TJ, Van Asperen M, Croiset G. Motivation as an independent and a dependent variable in medical education: A review of the literature. Medical Teacher. 2011;33:e242–e262. doi: 10.3109/0142159X.2011.558539.[PubMed][Cross Ref]
  • Levesque C, Zuehlke AN, Stanek LR, Ryan RM. Autonomy and competence in German and American university students: A comparative study based on self-determination theory. Journal of Educational Psychology. 2004;96:68–84. doi: 10.1037/0022-0663.96.1.68.[Cross Ref]
  • Loucks S, Kobos JC, Stanton B, Burstein AG, Lawlis GF. Sex-related psychological characteristics of medical students. The Journal of Psychology. 1979;102:119–123. doi: 10.1080/00223980.1979.9915103.[Cross Ref]
  • McManus IC, Richards P, Winder BC, Sproston KA. Clinical experience, performance in final examinations, and learning style in medical students: Prospective study. BMJ. 1998;316:345–350. doi: 10.1136/bmj.316.7128.345.[PMC free article][PubMed][Cross Ref]
  • Ratelle CF, Guay F, Vallerand RJ, Larose S, Senecal C. Autonomous, controlled, and amotivated types of academic motivation: A person-oriented analysis. Journal of Educational Psychology. 2007;99(4):734–746. doi: 10.1037/0022-0663.99.4.734.[Cross Ref]
  • Ryan RM, Deci EL. Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology. 2000;25:54–67. doi: 10.1006/ceps.1999.1020.[PubMed][Cross Ref]
  • Ryan RM, Deci EL. Self-determination theory and facilitation of intrinsic motivation, social development and well-being. American Psychologist. 2000;55(1):68–78. doi: 10.1037/0003-066X.55.1.68.[PubMed][Cross Ref]
  • Schmidt HG, Moust JHC. What makes a tutor effective? A structural-equations modeling approach to learning in problem-based curricula. Academic Medicine. 1995;70(8):708–714. doi: 10.1097/00001888-199508000-00015.[PubMed][Cross Ref]
  • Sobral DT. What kind of motivation drives medical students learning quests? Medical Education. 2004;38:950–957. doi: 10.1111/j.1365-2929.2004.01913.x.[PubMed][Cross Ref]
  • Soenens B, Vansteenkiste M. Antecedents and outcomes of self-determination in 3 life domains: The role of parents’ and teachers’ autonomy support. Journal of Youth and Adolescence. 2005;34(6):589–604. doi: 10.1007/s10964-005-8948-y.[Cross Ref]
  • Ten Cate OTJ. Medical education in the Netherlands. Medical Teacher. 2007;29:752–757. doi: 10.1080/01421590701724741.[PubMed][Cross Ref]
  • Vallerand RJ, Pelletier LG, Blais MR, Brière NM, Senècal C, Vallières EF. The academic motivation scale: A measure of intrinsic, extrinsic and amotivation in education. Educational and Psychological Measurement. 1992;52:1003–1017. doi: 10.1177/0013164492052004025.[Cross Ref]
  • Vallerand RJ, Pelletier LG, Blais MR, Brière NM, Senècal C, Vallières EF. On the assessment of intrinsic, extrinsic and amotivation in education: Evidence on the concurrent and construct validity of the Academic Motivation Scale. Educational and Psychological Measurement. 1993;53:159–172. doi: 10.1177/0013164493053001018.[Cross Ref]
  • Vansteenkiste, M., Sierens, E., Soenens, B., Luyckx, K., & Lens, W. (2009). Motivational profiles from a self-determination perspective: The quality of motivation matters. Journal of Educational Psychology, 101, 671–688.
  • Vansteenkiste M, Zhou M, Lens W, Soenens B. Experiences of autonomy and control among Chinese learners: Vitalizing or immobilizing? Journal of Educational Psychology. 2005;97(3):468–483. doi: 10.1037/0022-0663.97.3.468.[Cross Ref]
  • Violato C, Hecker KG. How to use structural equation modeling in medical education research: A brief guide. Teaching and Learning in Medicine. 2007;19(4):362–371. doi: 10.1080/10401330701542685.[PubMed][Cross Ref]
  • Wilkinson TJ, Wells JE, Bushnell JA. Medical student characteristics associated with time in study: Is spending more time always a good thing? Medical Teacher. 2007;29:106–110. doi: 10.1080/01421590601175317.[PubMed][Cross Ref]
  • Williams GC, Saizow R, Ross L, Deci EL. Motivation underlying career choice for internal medicine and surgery. Social Science Medicine. 1997;45(11):1705–1713. doi: 10.1016/S0277-9536(97)00103-2.[PubMed][Cross Ref]
  • Williams GC, Wiener MW, Markakis KM, Reeve J, Deci EL. Medical students’ motivation for internal medicine. Journal of General Internal Medicine. 1994;9:327–333. doi: 10.1007/BF02599180.[PubMed][Cross Ref]

Motivating Students

This page was written and compiled by Karin Kirk, SERC, and contains a summary of motivation research and pertinent references.

My students aren't motivated - how can I help them?

Teachers have a lot to do with their students' motivational level. A student may arrive in class with a certain degree of motivation. But the teacher's behavior and teaching style, the structure of the course, the nature of the assignments and informal interactions with students all have a large effect on student motivation. We may have heard the utterance, "my students are so unmotivated!" and the good news is that there's a lot that we can do to change that.

Intrinsic and Extrinsic Motivation

Educational psychology has identified two basic classifications of motivation - intrinsic and extrinsic. Intrinsic motivation arises from a desire to learn a topic due to its inherent interests, for self-fulfillment, enjoyment and to achieve a mastery of the subject. On the other hand, extrinsic motivation is motivation to perform and succeed for the sake of accomplishing a specific result or outcome. Students who are very grade-oriented are extrinsically motivated, whereas students who seem to truly embrace their work and take a genuine interest in it are intrinsically motivated.

Motivating Students

This chapter from the book Tools for Teaching by Barbara Gross Davis (Jossey-Bass Publishers: San Francisco, 1993) is a great place to start for ideas and tips about increasing student motivation in your classes. The author presents a handy distillation of research on motivation and uses examples and anecdotes that bring this material to life. In addition to general strategies, this chapter addresses successful instructional behaviors, how to structure a course to motivate students, de-emphasizing grades and responding with other types of feedback to students, and tips to encourage students to complete assigned readings. A reference list points the way to more specific information.

Excerpts from this chapter:

  • Give frequent, early, positive feedback that supports students' beliefs that they can do well.
  • Ensure opportunities for students' success by assigning tasks that are neither too easy nor too difficult.
  • Help students find personal meaning and value in the material.
  • Create an atmosphere that is open and positive.
  • Help students feel that they are valued members of a learning community.

Motivating Students - from the Vanderbilt Center for Teaching (more info)

This website contains a quick and useful primer on many of the important topics in student motivation. Topics include intrinsic and extrinsic motivation, the effect of learning style on motivation and strategies for motivating your students.

Here are some recurring themes about student motivation, drawn from the educational literature

  • Make it real

    In order to foster intrinsic motivation, try to create learning activities that are based on topics that are relevant to your students' lives. Strategies include using local examples, teaching with events in the news, using pop culture technology (iPods, cell phones, YouTube videos) to teach, or connecting the subject with your students' culture, outside interests or social lives. ([Brozo, 2005] ; McMahon and Kelly, 1996)
  • Provide choices

    Students can have increased motivation when they feel some sense of autonomy in the learning process, and that motivation declines when students have no voice in the class structure. Giving your students options can be as simple as letting them pick their lab partners or select from alternate assignments, or as complex as "contract teaching" wherein students can determine their own grading scale, due dates and assignments. Kurvink, 1993Reeve and Hyungshim, 2006 (Perkins 2002, GSA Abstract)
  • Balance the challenge

    Students perform best when the level of difficulty is slightly above their current ability level. If the task is to easy, it promotes boredom and may communicate a message of low expectations or a sense that the teacher believes the student is not capable of better work. A task that is too difficult may be seen as unattainable, may undermine self-efficacy, and may create anxiety. Scaffolding is one instructional technique where the challenge level is gradually raised as students are capable of more complex tasks. (Wang and Han) (more info) , [Margolis and McCabe, 2006][Adams, 1998]
  • Seek role models

    If students can identify with role models they may be more likely to see the relevance in the subject matter. For example, Weins et al (2003) found that female students were more likely to cite a positive influence with a teacher as a factor for becoming interested in science [Wiens et al, 2003] . In some cases, you can be a role model but it's unlikely that you will connect on that level with everyone in the class due to differences in gender, age and social circles. However there can be many sources of role models, such as invited guest speakers, fellow students or other peers.
  • Use peer models

    Students can learn by watching a peer succeed at a task. In this context, a peer means someone who the student identities with, not necessarily any other student. Peers may be drawn from groups as defined by gender, ethnicity, social circles, interests, achievement level, clothing, or age. [Margolis and McCabe, 2006]
  • Establish a sense of belonging

    People have a fundamental need to feel connected or related to other people. In an academic environment, research shows that students who feel they 'belong' have a higher degree of intrinsic motivation and academic confidence. According to students, their sense of belonging is fostered by an instructor that demonstrates warmth and openness, encourages student participation, is enthusiastic, friendly and helpful, and is organized and prepared for class. [Freeman, Anderman and Jensen, 2007][Anderman and Leake, 2005]
  • Adopt a supportive style

    A supportive teaching style that allows for student autonomy can foster increased student interest, enjoyment, engagement and performance. Supportive teacher behaviors include listening, giving hints and encouragement, being responsive to student questions and showing empathy for students. Reeve and Hyungshim, 2006

    Also see how immediacy in the classroom can be part of a supportive style of teaching.

    • Listening - carefully and fully attended to the student's speech, as evidenced by verbal or nonverbal signals of active, contingent, and responsive information processing.
    • Asking what student wants - Such as "Which problem do you want to start with?"
    • Allowing students to work in their own way
    • Allowing the students to talk
    • Using explanatory statements as to why a particular course of action might be useful, such as "How about we try the cube, because it is the easiest one."
    • Using praise as informational feedback, such as "Good job" and "That's great."
    • Offering encouragements to boost or sustain the student's engagement, such as "Almost," "You're close," and "You can do it."
    • Offering hints, such as "Laying the map on the table seems to work better than holding it in your lap" and "It might be easier to work on the bottom of the map first."
    • Being responsive to student-generated questions, such as "Yes, you have a good point" and "Yes, right, that was the second one."
    • Communicating with empathic statements to acknowledge the student's perspective or experience, such as "Yes, this one is difficult" and "I know it's sort hard to tell."
    From What Teachers Say and Do Supports Students' Autonomy during a Learning Activity
    • Talking
    • Holding or monopolizing learning materials
    • Giving the solutions or answers before the students had the opportunity to discover the solution themselves.
    • Uttering directives or commands, such as "Do it like this," "Start this way," or "Use pencil."
    • Making statements that the student should, must, has to, got to, or ought to do something, such as "You should keep doing that" and "You ought to . . ."
    • Asking controlling questions, such as "Can you move it like I showed you?" and "Why don't you go ahead and show me?"
    • Making statements communicating a shortage of time, such as "We only have a few minutes left."
    • Using praise as contingent reward to show approval of the student or the student's compliance with the teacher's directions, such as "You're smart" or "You are really good at playing with blocks."
    • Criticizing the student or the student's lack of compliance with the teacher's directions, such as "No, no, no, you shouldn't do that."
    From What Teachers Say and Do Supports Students' Autonomy during a Learning Activity
  • Strategize with struggling students

    When students are struggling with poor academic performance, low self-efficacy or low motivation, one strategy that may help is to teach them how to learn. That is, to outline specific strategies for completing an assignment, note-taking or reviewing for an exam. [Tuckerman 2003][Margolis and McCabe, 2006]

    Specific learning strategies:

    Pre-action phase (preparing for task) -take a reasonable risk, work toward goals that are challenging but attainable, work in manageable, bite-size pieces, take responsibility for your actions, believe in your own effort and capability, set a plan and work from it.

    Action phase - search the environment, ask questions, visualize it (?)

    Reaction phase (after one task, preparing for the next one) - use feedback from prior tasks, monitor your own actions, give yourself instructions (see also Tuckerman, 2003 )

Further Information

Presentations from the 2007 workshop on student motivations and attitudes

Internal and External Aspects of Motivation(PowerPoint 332kB Feb20 07)
Eric Pyle, Department of Geology & Environmental Science, James Madison University
Thinking About Motivation(PowerPoint 139kB Feb20 07)
Jenefer Husman
, Psychology in Education, Arizona State University
Thinking About Learning: Motivating Students to Become Intentional Learners(PowerPoint 720kB Feb20 07)
Karl Wirth
, Department of Geology, Macalester College

Read and respond to classroom dilemmas about student motivation written by workshop participants.

Web Sites

Motivation: A General Overview of Theories (more info)
This chapter in an e-book provides a brief summary of motivational theories that is written for educators. Topics include goals, self-efficacy, attribution theory, self-regulation and volition, and intrinsic motivation.

Six C's of motivation (more info)
This website describes a scenario in a geography classroom where the teacher uses instructional strategies to promote motivation amongst her students. The tactics are to give students choices in their assignments, to challenge them, to allow the class some extent of control over the learning environment, to promote collaboration between students, to construct meaning in the material and to establish positive consequences for students' achievement. The author concludes that when students engage in meaningful open-ended tasks, their motivation increases and the effect of learning is more powerful.

Motivation: What does the Research Say? (more info)
This website is written in the context of high school or middle school students, but is easily applied to the undergraduate learning experience. The site provides definitions of intrinsic and extrinsic motivation, strategies for increasing motivation, and suggestions to motivate students to engage in class activities.

How Can Teachers Develop Students' Motivation -- and Success? (more info)
This interview with Carol Dweck, professor of psychology at Columbia University, answers questions about types of motivation, with emphasis on performance (extrinsic) motivation vs. mastery (intrinsic) motivation. Questions address topics such as what teachers can do to help develop students who will work to overcome challenges rather than be overwhelmed by them, the challenge of the "gifted" label, and if self-esteem something that teachers can or should "give" to students. The site is easy reading, yet provides many useful insights.

Books and Journal Articles

Motivation from Within: Approaches for Encouraging Faculty and Students to Excel
Michael Theall, editor
citation and bibliographic information
The dozen authors of this book describe how motivational efforts involve adapting one's personal strengths to accommodate unique situations. Motivation is not something one "does to" others. Rather, efforts to motivate students and professors involve first connecting with their interests and their concerns, then broadening these with expanded significant choices, and gradually increasing participants' empowerment to meet these new aspirations.

Improving Self-Efficacy and Motivation: What to Do, What to Say
Howard Margolis and Patrick P McCabe
citation and bibliographic information
This article suggests practical solutions to improve the motivation of struggling learners. Specifically, the authors present strategies such as using peers as role models, teaching specific learning strategies, presenting the students with options and choices, communicating recent success, and more. These tactics can strengthen struggling learners' beliefs in their academic abilities and increase their willingness to engage in academic tasks.

The Effect of Learning and Motivation Strategies Training on College Students' Achievement
Bruce W. Tuckerman, the Ohio State University
citation and bibliographic information
The general purpose of this study was to determine the effectiveness of teaching students the use of specific learning and motivation strategies to meet the cognitive and motivational demands of college. A group of college students went through a course that was specifically designed to teach them learning strategies and give them an opportunity to practice the techniques and transfer these skills to other learning situations. The results showed that this method improved the GPA of the students who went through the program.

Who Does Extra-Credit Work in Introductory Science Courses?
Randy Moore
citation and bibliographic information
This study measured how many introductory biology students took advantage of extra-credit opportunities, the grades they earned, and reasons they gave for not completing extra credit work. The study found that high-achieving students pursued the extra credit work, while students who were earning poor grades did not. The author asserts that this behavior is tied to student motivation. Students who were motivated to succeed in the course made the choice to do the extra credit work, which is consistent with the other choices they had made, such as to attend lectures and help sessions. Similarly, students who earned poor grades typically demonstrated a low commitment to several components of the course, including the extra credit work.

Sense of Belonging in College Freshman at the Classroom and Campus Levels
Tierra M. Freeman, Lynley Anderman and Jane M. Jensen
citation and bibliographic information
This study examines how students' sense of belonging is related to academic motivation, and which type of teacher behaviors is correlated with developing a sense of belonging in students. The paper presents some useful background information on the topics of belonging, motivation and academic self-efficacy. In their experiments, the authors found that students' sense of belonging is fostered by an instructor that demonstrates warmth and openness, encourages student participation, is enthusiastic, friendly and helpful, and is organized and prepared for class.

What Teachers Say and Do to Support Students' Autonomy During a Learning Activity
Johnmarshall Reeve and Hyungshim Jang
citation and bibliographic information
This research paper presents the results of an educational experiment to measure the effects of different instructional behaviors. The experiment investigated a controlling style of teaching compared to an autonomy supportive style, and found that the supportive style resulted in increased student interest, enjoyment, engagement and performance. Autonomy-supportive teacher behavior can be effective in fostering intrinsic motivation in students. The paper provides useful background information on the topics of motivation, intentionality and autonomy, and also gives examples of controlling vs. supportive teacher behaviors.

The ABCs of Motivation
Lynley H. Anderman and Valerie S. Leake
citation and bibliographic information
Although this paper is written for faculty of educational psychology, the information is useful for any teacher who is interested in learning about some of the theory behind motivation. The purpose of this paper is to distill the numerous theories and frameworks for motivational principles into a simpler format. The authors offer that motivation is based on three fundamental needs: the need for autonomy, the need for belonging and the need for competence. An understanding of these concepts can help teachers provide a learning environment that increases motivation in their students.

Gender matters
Darrell J Wiens, Dayna J Depping, Stacey R Wallerich, Emily S Van Laar, Angela L Juhl
citation and bibliographic information
Do females and males choose science for different reasons? In this study 271 college biology students were surveyed to learn when they became interested and what factors determined their origin and maintenance of interest in biology. One finding was that females were more likely to cite a positive influence with a teacher as a factor for becoming interested in science, which has implications for teacher behavior in fostering an interest in science among female students.

"Contracting" as a motivational teaching tool
Karen Kurvink
citation and bibliographic information
The concept behind contracting, a motivational tool for stimulating learning, is discussed. Contracting involves a learning agreement between students and teachers, and it offers the opportunity for independent thinking.

What works in the nonmajors' science laboratory
David L. Adams
citation and bibliographic information
This paper offers practical advice on building a workable and meaningful introductory science laboratory for non-science majors. These students usually lack experience in and motivation for the laboratory, so a balanced use of "cookbook" and discovery-based approaches is recommended.

Connecting with students who are disinterested and inexperienced
William G Brozo
citation and bibliographic information
This article was written in the context of middle school education, but is still relevant for undergraduate students who are hard to reach. The author states that when students claim they are not interested in anything, educators must help them discover what actually does interest them. Furthermore, another way to help youth expand their repertoire of interests is by arranging systematic opportunities for them to interact with community members who are engaged citizens and have a wide variety of life experiences.

A Candle Lights the Way to Scientific Discourse
Li-hsuan Yang
citation and bibliographic information
This short article describes a simple and thought-provoking teaching strategy, burning a candle in the classroom and asking students to observe it and try to explain the processes they observe. The result is that students are able to engage in scientific discourse, hold competing hypotheses, looking for supporting evidence, communicating their ideas with supportive arguments, and proposing possible empirical studies to further their understanding. This technique could be applied to a geoscience classroom via simple demonstrations with physical models, videos or rock samples.

To learn more, read about how self-efficacy is related to student motivation and academic performance.

One thought on “Student Motivation Research Paper

Leave a Reply

Your email address will not be published. Required fields are marked *