Imidamide Synthesis Essay

  • 1.

    Y. Qiu, J. Huo, F. Jia, B.H. Shanksa, W. Li, J. Mater. Chem. A 4, 83–95 (2016)CrossRefGoogle Scholar

  • 2.

    R. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 135, 7823–7826 (2013)CrossRefGoogle Scholar

  • 3.

    W. Yang, T.-P. Fellinger, M. Antonietti, J. Am. Chem. Soc. 133, 206–209 (2011)CrossRefGoogle Scholar

  • 4.

    Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.A. Chen, S. Huang, ACS Nano 6, 205–211 (2012)CrossRefGoogle Scholar

  • 5.

    Y. She, Z. Lu, M. Ni, L. Li, M.K.H. Leung, ACS Appl. Mater. Interfaces 7, 7214–7221 (2015)CrossRefGoogle Scholar

  • 6.

    H. Baobing, P. Lu, Y. Fang, L. Yuchuan, X. Zailai, J. Energy Chem. 26, 712–718 (2017)CrossRefGoogle Scholar

  • 7.

    I.L. Alonso-Lemus, F.J. Rodriguez-Varela, M.Z. Figueroa-Torres, M.E. Sanchez-Castro, A. Hernandez-Ramírez, D. Lardizabal-Gutierrez, P. Quintana-Owen, Int. J. Hydrog. Energy 41, 23409–23416 (2016)CrossRefGoogle Scholar

  • 8.

    J. Song, S. Wook Kang, Y.W. Lee, Y. Park, J.-H. Kim, S.W. Han, ACS Appl. Mater. Interfaces 9, 1692–1701 (2017)CrossRefGoogle Scholar

  • 9.

    Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, J. Am. Chem. Soc. 138, 10019–10025 (2016)CrossRefGoogle Scholar

  • 10.

    L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 4, 1321–1326 (2010)CrossRefGoogle Scholar

  • 11.

    J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10, 444–452 (2015)CrossRefGoogle Scholar

  • 12.

    J. Wang, J. Hao, D. Liu, S. Qin, D. Portehault, Y. Li, J. Chen, W. Lei, ACS Energy Lett. 2, 306–312 (2017)CrossRefGoogle Scholar

  • 13.

    Y. Zhan, J. Huang, Z. Lin, X. Yu, D. Zeng, X. Zhang, F. Xie, W. Zhang, J. Chen, H. Meng, Carbon 95, 930–939 (2015)CrossRefGoogle Scholar

  • 14.

    Q. Liu, Z. Pu, C. Tang, A.M. Asiri, A.H. Qusti, A.O. Al-Youbi, X. Sun, Electrochem. Commun. 36, 57–61 (2013)CrossRefGoogle Scholar

  • 15.

    C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amoróos, Int. J. Hydrog. Energy 40, 11242–11253 (2015)CrossRefGoogle Scholar

  • 16.

    A. Ensafi, M. Jafari-Asl, B. Rezaei, Electrochim. Acta 194, 95–103 (2016)CrossRefGoogle Scholar

  • 17.

    A. Navaeea, A. Salimi, RSC Adv. 5, 59874–59880 (2015)CrossRefGoogle Scholar

  • 18.

    C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2, 88–97 (2013)CrossRefGoogle Scholar

  • 19.

    A. Pourjavadi, N. Safaie, S.H. Hosseini, C. Bennett, J. Ind. Eng. Chem. 38, 82–92 (2016)CrossRefGoogle Scholar

  • 20.

    L. Zhou, M. Yin, X. Jiang, Q. Huang, W. Lang, New J. Chem. 40, 1454–1459 (2016)CrossRefGoogle Scholar

  • 21.

    X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang, S. Guo, J. Phys. Chem. C 115, 11957–11961 (2011)CrossRefGoogle Scholar

  • 22.

    A.M. Atta, H.A. Al-Lohedan, S.A. Al-Hussain, Int. J. Mol. Sci. 16, 6911–6931 (2015)CrossRefGoogle Scholar

  • 23.

    X. Lu, Z. Li, X.W. Yin, Y. Suwen, Y.Wang Liu, Int. J. Hydrog. Energy 42, 17504–17513 (2017)CrossRefGoogle Scholar

  • 24.

    S. Sorena, B.D. Mohaptraa, S. Mishraa, A.K. Debnathb, D.K. Aswalb, K.S.K. Varadwaja, P. Parhia, RSC Adv. 6, 77100–77104 (2016)CrossRefGoogle Scholar

  • 25.

    K.N. Kudin, B. Ozbas, H.C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car. Nano Lett. 8, 36–41 (2008)CrossRefGoogle Scholar

  • 26.

    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, Phys. Rev. Lett. 97, 187401–187404 (2006)CrossRefGoogle Scholar

  • 27.

    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar

  • 28.

    M. Liu, Y. Song, S. He, W.W. Tjiu, J. Pan, Y.-Y. Xia, T. Liu, ACS Appl. Mater. Interfaces 6, 4214–4222 (2014)CrossRefGoogle Scholar

  • 29.

    G. Tuci, C. Zafferoni, P. D’Ambrosio, S. Caporali, M. Ceppatelli, A. Rossin, T. Tsoufis, M. Innocenti, G. Giambastiani, ACS Catal. 3, 2108–2111 (2013)CrossRefGoogle Scholar

  • 30.

    F. Kuang, D. Zhang, Y. Li, Y. Wan, B. Hou, J. Solid State Electrochem. 13, 385–390 (2009)CrossRefGoogle Scholar

  • 31.

    R.K. Singh, R. Devivaraprasad, T. Kar, A. Chakraborty, M. Neergat, J. Electrochem. Soc. 162, F489–F498 (2015)CrossRefGoogle Scholar

  • 32.

    Z. Zhang, H. Li, J. Hu, B. Liu, Q. Zhang, C. Fernandez, Q. Peng, J. Alloys Compd. 694, 419–428 (2017)CrossRefGoogle Scholar

  • 33.

    H.F. Lv, S.C. Mu, Nanoscale 6, 5063–5074 (2014)CrossRefGoogle Scholar

  • Citation data is made available by participants in Crossref's Cited-by Linking service. For a more comprehensive list of citations to this article, users are encouraged to perform a search inSciFinder.

  • Rh-Catalyzed Conversion of 3-Diazoindolin-2-imines to 5H-Pyrazino[2,3-b]indoles with Photoluminescent Properties

    HualongDingZaibinWangSonglinBaiPingLuYanguangWang

    Organic Letters201719 (24), 6514-6517

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Ruthenium(II)-Catalyzed Redox-Neutral Oxidative Cyclization of Benzimidates with Alkenes with Hydrogen Evolution

    RajendranManikandanMasilamaniTamizmaniMasilamaniJeganmohan

    Organic Letters201719 (24), 6678-6681

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Transition-Metal-Catalyzed Cross-Couplings through Carbene Migratory Insertion

    YingXiaDiQiuJianboWang

    Chemical Reviews2017117 (23), 13810-13889

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Synthesis of Azepinoindoles via Rhodium-Catalyzed Formal Aza-[4 + 3] Cycloaddition Reaction of 3-Diazoindolin-2-imines with 1,3-Dienes in One-Pot

    SanghyuckKimHyunseokKimKyusikUmPhil HoLee

    The Journal of Organic Chemistry201782 (18), 9808-9815

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Cobalt-Catalyzed Oxidant-Free Spirocycle Synthesis by Liberation of Hydrogen

    NingningLvYueLiuChunhuaXiongZhanxiangLiuYuhongZhang

    Organic Letters201719 (17), 4640-4643

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Synthesis of Benzopyridoindolone Derivatives via a One-Pot Copper Catalyzed Tandem Reaction of 2-Iodobenzamide Derivatives and 2-Iodobenzylcyanides

    VeerababuraoKavalaZonghanYangAshokKonalaChia-YuHuangChun-WeiKuoChing-FaYao

    The Journal of Organic Chemistry201782 (14), 7280-7286

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Synthesis of Functionalized Indenones via Rh-Catalyzed C–H Activation Cascade Reaction

    NingningLvZhengkaiChenYueLiuZhanxiangLiuYuhongZhang

    Organic Letters201719 (10), 2588-2591

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Synthesis of Naphthoquinolizinones through Rh(III)-Catalyzed Double C(sp2)–H Bond Carbenoid Insertion and Annulation of 2-Aryl-3-cyanopyridines with α-Diazo Carbonyl Compounds

    BeibeiZhangBinLiXinyingZhangXuesenFan

    Organic Letters201719 (9), 2294-2297

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • Preparation of 3-Aryl-2-aminoindoles via Rhodium-Catalyzed Coupling Reaction between 2-Arylpyridines and 3-Diazoindolin-2-imines

    ZhenminLiXiaorongZhouPingLuYanguangWang

    The Journal of Organic Chemistry201681 (19), 9433-9437

    Abstract | Full Text HTML | PDF | PDF w/ Links

  • The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016

    James W.Herndon

    Coordination Chemistry Reviews2018356, 1-114

  • Rhodium-Catalyzed C−H Functionalization of Indoles with Diazo Compounds: Synthesis of Structurally Diverse 2,3-Fused Indoles

    MengyingGaoYaxiYangHuaChenBingZhou

    Advanced Synthesis & Catalysis2018360 (1), 100-105

  • One thought on “Imidamide Synthesis Essay

    Leave a Reply

    Your email address will not be published. Required fields are marked *